Patterned auditory stimulation and suck dynamics in full-term infants

Emily Zimmerman (e.zimmerman@neu.edu), Megan Foran
Department of Communication Sciences & Disorders, Northeastern University, Boston, MA, USA

Keywords
Acoustic stimulation, Feeding, Infants, Non-nutritive suck

Correspondence
E Zimmerman, Department of Communication Sciences & Disorders, Northeastern University, 228C Forsyth Building, 360 Huntington Ave, Boston, MA 02115, USA.
Tel: +1617-373-5140 | Fax: +1617-373-2239 | Email: e.zimmerman@neu.edu

ABSTRACT
Aim: To determine whether patterned auditory stimuli, designed to mimic the natural burst-pause pattern evident in non-nutritive suck (NNS) with variations to the intraburst frequency, alter infants’ NNS and cardiorespiratory patterning.

Methods: Sixteen healthy full-term infants participated in this study. Infants were fitted with electrocardiogram electrodes and a respiratory belt to measure cardiorespiratory patterning. Infants were offered a custom pacifier attached to a pressure transducer to measure NNS. Prior to the start of the study, a two-minute NNS and cardiorespiratory baseline was attained. Next, three auditory stimulation conditions were presented in the form of sucking clicks at interburst frequencies of 1, 2 and 4 Hz. Each of the three frequencies was played for two minutes.

Results: Separate repeated-measures ANOVAs revealed significant differences in NNS burst duration \(p = 0.013 \), NNS cycles/burst \(p = 0.010 \) and NNS bursts/minute \(p = 0.005 \) across auditory stimulation conditions. No significant differences were evident in the cardiorespiratory outcomes.

Conclusion: We found that patterned auditory stimulation significantly reduced NNS dynamics and had no effect on cardiorespiratory patterning. The findings further suggest that infants attempted to modulate their suck pattern to the patterned acoustic stimuli by shortening their burst durations with fewer cycles per burst.

INTRODUCTION
Non-nutritive suck (NNS) is one of the first motor tasks an infant completes soon after birth, and this behaviour begins in utero as early as 15 weeks’ gestation (1). NNS is extremely well patterned, occurring at an intraburst frequency of 2 Hz, and is characterised by bursts of sucking events and pause periods for respiration (2). In 1968, Wolff was the first researcher to quantify the serial organisation of suck development. He sampled suck from 40 full-term infants who were four days old and found the average frequency of sucks/burst to be 2.13 (±0.2), the average number of sucks/burst to be 7.17 (±1.31) and the duration of interburst rest periods to be 6.61 seconds (±1.5) (2). Wolff also described a linear increase in intraburst frequency across ages with a mean NNS frequency of 1.7 Hz between 0 and 3 days of life and 2.6 Hz between 12 and 24 months. While Wolff was the first to quantify suck behaviour, many researchers since have added to his work by further demonstration of variations in suck behaviour across cohorts of infants, term infants in the first month of life (3), preterm infants (4) and infants of diabetic mothers (5) to name a few. In addition, many researchers have shown the positive outcomes afforded by NNS stimulation, including improved oral feeding, growth, maturation, behavioural state control and gastric motility (6,7).

Many of the benefits evident from NNS are likely due, in part, to its neural control mechanisms within the brainstem. The neural substrates for suck are controlled by the suck central pattern generator (sCPG), a network of interneurons that are easily modified by descending cortical inputs and by sensory inputs from the periphery. These circuits are also capable of modulating their motor output in response to sensory stimuli as evidenced previously by the

Key notes
- Little is known about how patterned auditory cues can influence non-nutritive suck patterning in healthy infants.
- Infants attempted to modulate their non-nutritive suck in response to auditory stimuli by reducing their suck activity with significantly fewer suck bursts that lasted a shorter duration with less suck cycles per burst.
- Future studies are needed to further explore the connectivity between auditory stimuli and non-nutritive suck behaviour.
Auditory stimulation and suck patterning

Auditory sensory stimulation paradigms have been widely used in the preterm infant population in an effort to improve a variety of clinical outcomes. Music therapy has been a favourable form of auditory stimulation due to its potential to soothe the infant as well as improve heart rate and behavioural state and reduce the length of neonatal intensive care unit (NICU) stay (9,10). As more research highlights the importance of early language exposure, researchers have started using maternal voice paradigms with preterm infants and measured its effect on weight gain velocity (11), feeding tolerance (12), behaviour development (13) and gross motor activity (14). Recently, in a suck-reinforcement study design, Chorna et al. (15) utilised a pacifier-activated music player (PAM) that replaced music with the infant’s mother’s voice. In this study, when infants met a preset suck pressure threshold for a set duration, hearing a recording of their mother singing a lullaby rewarded them, and if they stopped sucking, the mother’s voice would stop. This study found that PAM using mother’s voice improved oral feeding skills in preterm infants.

A few previous studies have examined the role of auditory stimuli on NNS dynamics in young infants. Daniel et al. (16) examined the role of auditory (complex noise) and taste (sucrose) stimuli on sucking, heart rate and movement in the newborn. They found that the presentation of low-intensity complex sounds shortened suck latencies compared to the no-sounds trials. This finding was consistent with a previous finding by Sameroff (17) who showed that auditory stimuli shortened infants’ sucking bursts and lengthen the duration of their suck interval. Similarly, Fischel (18) examined suck behaviour when infants were presented with a brief presentation of complex sounds. One group of infants heard these sounds at the initiation of sucking bursts, and the other group heard these sounds during pause periods between sucking bursts. They found that infants who were presented with the complex sounds during the pause periods showed significantly more activity levels in response to the sounds than those exposed during suck bursting. They also suggested that bursting and pausing were not similar contexts for responding to acoustic stimuli. Taken together, these studies showed that auditory stimuli in the form of complex noise degraded suck in infants (17,18). Alternatively, Moon and Fifier (19) found that infants initiated bursts of sucking more frequently during maternal syllable exposure compared to the quiet condition. These previous studies have shown that there appears to be a neural-physiological link between auditory stimulation and sucking skills and that the type of acoustic stimuli (noise vs. speech) and when the sounds are presented (during bursts of sucking or during pause periods for respiration) influence suck behaviour.

While these previous studies provided a tremendous amount of information regarding how complex sounds impact suck responsiveness, to our knowledge, no study has examined how patterned auditory stimuli presented continuously can modulate NNS and whether this type of stimuli alters cardiorespiratory patterning in healthy infants. Therefore, this study aimed to determine whether infants’ NNS and cardiorespiratory patterning could be influenced by patterned auditory stimuli designed to mimic the natural burst-pause pattern evident in NNS with variations to the intraburst frequency (1, 2, and 4 Hz). We hypothesised that infants would modify their suck dynamics to the patterned acoustic stimuli while maintaining stable cardiorespiratory patterning.

METHODS

The effects of patterned auditory stimulation on NNS and cardiorespiratory patterning were tested on 16 full-term (birth weight range 5.6–11.2 lbs), healthy infants (12 males/four females), six months and younger (testing age range: one month four days to six months 20 days), who had no medical complications. We chose to study infants less than six months of age because once infants commence eating soft foods and purees, they tend to lose interest in the pacifier (2). In addition, previous research by Wolff showed that frequency of suck patterning changes minimally (2.0–2.8 Hz) between one and six months of life (2). Exclusion criteria included preterm birth, serious medical diagnoses, hearing difficulties as diagnosed by newborn hearing screenings and/or diagnosed feeding problems. The institutional review board approved the study, and parental consent was attained prior to the start of the study. Parking was paid for, and parents were compensated with a small baby gift.

Parents brought their infants to the laboratory approximately one hour before their infant’s scheduled feeding. This time was purposely chosen to ensure that infants would be in an alert state ready to partake in NNS as previous research has shown that neonatal reflexes, like sucking, are tied to the infant’s ability to attain and maintain an alert state (20). As part of an initial intake form completed by the mothers prior to the study, we asked whether their infant used a pacifier at home and if so which pacifier. Overall, we did not find maternal report of pacifier usage to influence the NNS results and a majority of the mothers reported that their infant used a variety of pacifiers on a daily basis. After all of the intake forms were completed, infants were fitted with a Pneumotrace respiratory belt transducer (ADInstruments, Sydney, Australia) to measure respiratory rate (RR), and Softrace small radiotranslucent electrodes to measure cardiac data [heart rate (HR) and heart rate variability (HRV)]. The cardiac signals were amplified using a BioAmp (ADInstruments). The study took place in the Infant Discovery Room within the laboratory, which is a sound-treated room with a fabric wrapped acoustic panel on one wall designed to reduce noise. Next, infants were offered the Soothie pacifier wrapped acoustic panel on one wall designed to reduce noise. Next, infants were offered the Soothie pacifier
(Philips Avent, Sudbury, UK), which was connected to a custom measurement system to detect and measure the infants’ NNS pattern. The system utilised a pressure transducer (Honeywell TruStability™ HSC Series Pressure Sensor, Morris Plains, NJ, USA) that measured the pressure within the pacifier during infant sucking. The input voltage was 5 V direct current (VDC), the output voltage was 0–5 VDC, the measurement range was 0–158.4 inches H2O, and the pressure transducer was housed within the pacifier handle. The pressure transducer was calibrated prior to each participant.

Once the study started, the specialised noise reducing and fully sealed door to the room was closed in order to keep excess noise levels within the room to a minimum. In addition, the mothers were instructed not to speak during the study unless it was an emergency. During the study, infants were positioned on the caregivers’ lap approximately 1 m from the loud speaker and they faced a white wall. At the beginning of the study, the infant sucked on a pacifier for two minutes to attain baseline for suck and cardiorespiratory patterning. After the two-minute baseline, the patterned acoustic stimuli were presented to the infant via a loudspeaker. These sounds were played at a safe listening level (i.e. 80 decibel peak sound pressure level due to their short duration) and sound level was tested prior to the start of every session. The acoustic stimuli consisted of patterned suck clicks made by an adult NNS expert by clicking her tongue against the roof of her mouth. We purposely chose to have an adult make the suck click sounds so that we could have more control over the acoustic stimuli. The recorded burst contained seven cycles in an effort to replicate the average cycles per burst of a ‘typical’ suck pattern described by Wolff in 1968. Next, the burst recording was mixed in Audacity®, Renton, WA, USA (version 2.1.2) so that the subsequent burst sounds were copied and pasted from the original recording with a set pause period between bursts of 6.5 seconds, again to replicate the typical interburst pause period previously described by Wolff. We then altered the original burst recording in Audacity® so that the intraburst frequencies were 1, 2 and 4 Hz in an attempt to modulate the infant’s suck (Fig. 1). Each intraburst frequency (1, 2 and 4 Hz) was presented for two minutes each. Presentation orders of acoustic frequency conditions were counterbalanced and randomly assigned among participants. Data acquisition was completed using the ADInstruments PowerLab (16/35) and Labchart Pro software was used to analyse cardiorespiratory and NNS dynamics. These suck dynamics included NNS burst duration (seconds), NNS cycles per burst, NNS cycles per minute, NNS bursts per minute, NNS frequency (Hz) and NNS amplitude (cmH2O); see Figure 2.

RESULTS
Sixteen full-term infants completed this study; however, only twelve infants provided data that could be analysed due to behavioural-related issues (e.g. crying, refusal to suck). The infants who fully completed the study were observed to be relaxed and comfortable in the environment throughout the study session. The infants who experienced difficulty cooperating were often hungry or agitated. Separate repeated-measures ANOVAs were completed to examine the effect of patterned auditory stimuli on each dependent variable (see Table 1). No statistically significant differences were observed between patterned acoustic stimuli and the cardiorespiratory outcomes. However, statistical differences were found between acoustic patterned stimuli and the following NNS variables: NNS burst duration (seconds), NNS cycles/burst and NNS cycles/minutes.

Non-nutritive suck burst duration was found to be significantly (p = 0.013) different for auditory conditions. Pairwise comparisons revealed that infants had significantly [p = 0.002, 95% CI (0.314, 1.480)] longer NNS burst durations during the baseline compared to the 2-Hz acoustic stimuli. The baseline condition produced an average NNS burst duration of 3.32 seconds (±2.14), whereas the 2-Hz condition produced a shorter NNS burst duration of 2.42 (±1.78) seconds.

Non-nutritive suck cycles/burst was found to be significantly (p = 0.010) different for auditory conditions. A pairwise comparison revealed that the baseline condition significantly [p = 0.007, 95% CI (0.500, 3.457)] increased the NNS cycles/burst compared to the 2-Hz acoustic stimuli. The baseline condition produced an average NNS burst duration of 7.16 cycles/burst (±4.23), whereas the 2-Hz condition produced a reduced amount of NNS cycles/burst of 5.18 (±3.44).

Non-nutritive suck cycles/min was significantly (p = 0.005) different for auditory stimuli. A pairwise comparison revealed that the baseline condition significantly [p = 0.043, 95% CI (0.311, 23.92)] increased the NNS cycles/min compared to the 1-Hz acoustic stimuli. The baseline condition produced an average NNS cycles/min of 38.96 cycles/min (±26.21), while the 1-Hz condition produced a reduced NNS cycles/min of 26.84 (±20.63).

DISCUSSION
In this study, we examined whether patterned and continuous auditory suck stimuli that varied in intraburst frequencies (1, 2, and 4 Hz) could alter infants’ suck and cardiorespiratory patterning. We found that certain frequencies of patterned auditory stimulation significantly reduced NNS outcomes, such as NNS burst duration, NNS cycles per burst and NNS cycles per minute. These findings are consistent with previous literature showing that auditory stimulation, in the form of clicks or complex noise, presented while sucking reduced NNS behaviour (17,18). With each significant dependent measure, pairwise comparisons showed that the largest differences were evident when comparing the baseline vs. either the 1- or 2-Hz conditions. It is likely that the 4-Hz stimuli was too different from the infant’s natural suck frequency for adaptation to occur, whereas in the 1- and 2-Hz conditions, modulation was more feasible.

While no statistical differences were evident in NNS frequency, infants sucked the fastest (2.17 Hz) during the
2-Hz stimuli and the slowest (2.09 Hz) during the 1-Hz stimuli, thereby demonstrating minimal suck modulation around 2 Hz. This finding is consistent with previous literature reporting NNS frequency to range from 2.0 to 2.8 Hz between birth and six months of life (2). This minimal frequency adaptation is likely due to the reflexive nature of NNS and the health status of our subjects. Previous research by Barlow et al. (21) found that healthy preterm infants manifested significantly longer NNS burst structure with different NNS burst formation compared to premature infants with respiratory distress syndrome.

It is clear that infants modulate their suck activity while acoustic stimuli are presented; however, the exact pathway and mechanism for this neural connectivity remains unknown. We speculate two mechanisms that might be involved. One possibility is that acoustic stimuli changed the infant’s state control which then altered the infant’s suck patterning. This is consistent with previous research showing that neonatal reflexes, like sucking, are tied to the infant’s ability to attain and maintain an alert state (20,22). Another possibility is the connectivity between the auditory system and the sCPG. Previous studies have shown entrainment of the sCPG to patterned orocutaneous stimulation (7,8). While we did not see evidence of entrainment in our study, we speculate that lack of entrainment could be due to the brief exposure of the auditory stimuli in this study. The infants in our study had only a short (two minutes for each frequency), one-time exposure to the patterned acoustic stimuli and modified their NNS burst duration, NNS cycles/burst and NNS cycles/min, thereby indicating suck adapting to acoustic stimuli relatively quickly. This type of quick modulation has also been shown in orocutaneous suck stimulation paradigms (7,8). These studies found quick modulation (the day of the stimuli) but also modulation over time (10 days) after repeated exposures to these stimuli. Therefore, it is likely that an extended period of exposure to the patterned auditory stimuli over time could be beneficial in revealing the clinical effectiveness of this type of stimuli. Such studies would determine whether using patterned auditory stimulation as a therapeutic intervention could enhance NNS for infants with delayed suck behaviours, particularly premature infants in the NICU. This is an important next step as therapies that increase the neural drive to the sCPG have the potential to reduce the intensity on internal needs and allow the infant’s focus to be more on external needs, such as responding to

Figure 1 An example of the patterned auditory stimuli. These sounds were essentially suck sound clicks that were presented to the infant. The patterned stimuli mimicked the burst/pause pattern that is characteristic of NNS and all stimuli were seven cycles/burst with a 6.5 second interburst pause period. The stimuli conditions differed in their intraburst frequency and burst duration.

Figure 2 NNS is organised in bursts (black brackets) of sucking and pause periods for breathing. Each burst contains approximately 6–12 cycles (black circles). The suck pressure amplitude is measured in cmH2O. The suck dynamics included in our study included the following: NNS burst duration, NNS cycles per burst, NNS cycles per minute, NNS bursts per minute, NNS intraburst frequency (Hz) and NNS amplitude (cmH2O).
one’s local environment (23), an essential part of early learning. As such, future studies should also focus on a larger number of infants, as well as different cohorts of infants, such as infants born prematurely.

Understanding how auditory stimulation impacts NNS skills is clinically important because sucking is an innate skill that is essential for proper growth and development. Many speech-language pathologists (SLPs) assess suck in a variety of environments (NICU, home, clinics, etc.), and results from the current study suggest that assessing NNS in infants while a patterned auditory stimulus is present degrades suck patternning. Therefore, SLPs and other developmental specialists should consider the acoustic environment (noise versus quiet) when assessing suck patternning.

Lastly, in our study, we found that infants were able to modulate to their suck patternning to patterned acoustic stimuli while maintaining stable cardiorespiratory control. We speculate that this is likely due to the fact that our infants were healthy and born full-term. This finding was not surprising as a previous study from our laboratory showed that healthy infants maintained stable cardiorespiratory patternning across feeding phases (24). However, ensuring this level of stability in healthy infants is imperative before moving to more at-risk populations who will likely have more difficulty with this task. For example, infants born prematurely often have more difficulty achieving the balanced stimulation of sympathetic and parasympathetic pathways (25) needed for adequate cardiorespiratory stability.

There were several limitations to this study. This study included a small sample of healthy infants that were tested at a single time point. This approach was purposeful as the primary goal of this work is to examine the auditory stimul-

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Cardiorespiratory and NNS outcomes across acoustic conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variable</td>
<td>Baseline</td>
</tr>
<tr>
<td>Respiratory Rate (BPM)</td>
<td>62.77 (±12.31)</td>
</tr>
<tr>
<td></td>
<td>52.70–90.96</td>
</tr>
<tr>
<td>Heart Rate (BPM)</td>
<td>143.42 (±16.87)</td>
</tr>
<tr>
<td></td>
<td>139.53–170.33</td>
</tr>
<tr>
<td>High HRV (%)</td>
<td>19.80 (±1.11)</td>
</tr>
<tr>
<td></td>
<td>7.20–42.01</td>
</tr>
<tr>
<td>Low HRV (%)</td>
<td>74.10 (±25.16)</td>
</tr>
<tr>
<td></td>
<td>1.87–92.46</td>
</tr>
<tr>
<td>LF/HF (%)</td>
<td>7.86 (±5.51)</td>
</tr>
<tr>
<td></td>
<td>1.87–20.53</td>
</tr>
<tr>
<td>NNS Amplitude (CmH2O)</td>
<td>91.41 (±26.36)</td>
</tr>
<tr>
<td></td>
<td>43.41–124.53</td>
</tr>
<tr>
<td>NNS Frequency (Hz)</td>
<td>2.11 (±0.25)</td>
</tr>
<tr>
<td></td>
<td>1.63–2.62</td>
</tr>
<tr>
<td>NNS Bursts/Min</td>
<td>5.00 (±2.51)</td>
</tr>
<tr>
<td></td>
<td>1.00–9.00</td>
</tr>
<tr>
<td>NNS Cycles/Burst</td>
<td>7.16 (±4.23)</td>
</tr>
<tr>
<td></td>
<td>2.33–17.00</td>
</tr>
<tr>
<td>NNS Cycles/Min</td>
<td>38.96 (±26.21)</td>
</tr>
<tr>
<td></td>
<td>25.0–82.00</td>
</tr>
<tr>
<td>NNS Burst Duration (sec)</td>
<td>3.32 (±2.14)</td>
</tr>
<tr>
<td></td>
<td>1.01–9.01</td>
</tr>
</tbody>
</table>

Numbers represent mean, (SD), and range.
*Greenhouse–Geisser correction.
†Bonferroni post hoc adjustment.
NNS relationship in healthy infants before presenting it to more at-risk populations. More research needs to be completed to examine how populations with poor suck patterning would adapt to this form of auditory stimuli.

CONCLUSIONS
The results of this study indicated that patterned auditory stimuli presented continuously altered suck patterning in full-term infants. Infants had significantly longer NNS burst duration, a greater number of cycles per burst and more cycles per minute during the baseline condition compared to the patterned acoustic stimuli conditions.

ACKNOWLEDGEMENTS
We would like to thank all of the mothers and infants who participated in the study, in addition to the other members of the Speech and Neurodevelopment Lab at Northeastern University who assisted with data collection and analysis. Thank you Alex Newman, BS, for helping to build and test the pressure transducer system used in this study.

FUNDING
The project described was supported by the National Center for Advancing Translational Sciences, National Institutes of Health, Award Number UL1TR001064. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

CONFLICT OF INTEREST
Authors have reported no relevant financial and/or personal relationship with other people or organisations that could inappropriately influence their work.

References