Synthetic Orocutaneous Stimulation Entrains Suck in Preterm Infants With Feeding Difficulties

By Steven M. Barlow, PhD; Meredith A. Poore, MA; Emily A. Zimmerman, MA; and Donald S. Finan, PhD

INTRODUCTION

Suck is a precocial ororhythmic motor behavior in humans and integral to competent oral feeds. However, premature infants often demonstrate oromotor dyscoordination and are unable to suck and feed orally [1,2]. This represents a frequent and serious challenge both to the neonatal intensive care unit (NICU) survivors and the physician-provider-parent teams. The potential causes for delayed or impaired suck development are numerous and may result from neurologic insult to the developing brain, feeding intolerance, or as a result of interventions which interfere with ororhythmic pattern formation. For example, lengthy oxygen supplementation procedures cost the preterm infant precious sensory and motor experiences during a critical period of brain development when the central patterning of suck and feeding skills are being refined. Even the presence of a nasogastric (NG) feeding tube has negative effects on sucking and breathing [3]. Trussing the lower face with tubes and tape also restricts the range and type of oral movements. Interruption of these experiences may impair fragile syntheses of how the brain maps these functions [4,5]. For some preterm infants, poor suck and oromotor dyscoordination may persist well into early childhood and lead to significant delays in the emergence of other oromotor behaviors, including babbling, speech-language production, and feeding [6,7]. Moreover, failure to establish oral feeding skills in the NICU may result in the infant being sent home on gavage feedings, and hinder the development of coordinated oromotor behavior. The difficulties associated with establishing oral feed competence along with the additional costs for extended hospitalization underscores the need for assessment and therapeutic tools to facilitate the development of normal oral motor skills [8-10].

Infants' readiness to feed is often evaluated by their display of non-nutritive sucking [11]. Suck is manifest in-utero between 15 and 18 weeks gestational age (GA), and is remarkably stable and well-patterned by 34 weeks post-menstrual age (PMA) [12]. The non-nutritive suck is defined as any repetitive mouthing activity on a blind nipple or pacifier, which does not deliver a liquid stimulus [13,14]. The characteristic non-nutritive suck (NNS) pattern consists of a series of bursts and pauses; each burst contains 6 – 12 suck cycles that occur at approximately 2 Hz. The maturation and coordination of the NNS precedes the suck-swallow-breathe pattern associated with the nutritive suck [15-17]. Nutritive suck occurs at a slower average cycle frequency of approximately 1 Hz with fewer interburst pauses.

The utility of the NNS for the developing infant has been shown to benefit growth, maturation, and gastric motility, while decreasing stress...
Pediatrics Medical Group offers physicians the best of both worlds: the clinical autonomy and atmosphere of a local private practice coupled with the opportunities, administrative relief and clinical support that come from an affiliation with a nationwide network.

Pediatrics offers physicians:
- Professional liability insurance
- Competitive salaries
- CME allowance
- Comprehensive health/life benefits
- Relocation assistance
- Clinical research opportunities

Visit our Web site at www.pediatrix.com/careers to learn more.

We currently have openings in the following locations:

CALIFORNIA
- Fountain Valley
- Lancaster
- Oxnard
- Pasadena
- Torrance
- West Covina

COLORADO
- Denver

FLORIDA
- Floater
- Melbourne
- Pensacola
- Tampa Bay

GEORGIA
- Atlanta
- Macon

INDIANA
- Munster

KANSAS
- Wichita

LOUISIANA
- Baton Rouge

MARYLAND
- Cheverly

NEVADA
- Las Vegas
- Reno

NEW MEXICO
- Albuquerque

NEW YORK
- Elmira

OHIO
- Columbus
- Dayton

OKLAHOMA
- Oklahoma City
- Tulsa

PENNSYLVANIA
- Harrisburg

SOUTH CAROLINA
- Florence
- Spartanburg

TENNESSEE
- Chattanooga
- Memphis

TEXAS
- Corpus Christi
- Houston
- San Antonio

VIRGINIA
- Fredericksburg
- Lynchburg
- Virginia Beach

WASHINGTON
- Spokane

PUERTO RICO

What’s new on campus?

Visit the Pediatrics University campus at www.pediatrixu.com to learn more about our continuing education activities. Recent Grand Rounds include:

- Neonatal Failure to Thrive: Growth Failure in the NICU?
[8,17-21] and enhancing oral feeds [22]. The NNS accelerates the transition from tube to independent oral feeding and is presumed to enhance the maturation of neural systems responsible for ororhythmic activity [23-25]. Recent evidence suggests that the sensory consequences associated with the production of NNS have beneficial effects on oral feeding performance and the development of specific sucking skills [9,10]. Accurate assessment of oromotor dyscoordination in the preterm infant extends beyond the immediate issues surrounding the transition to oral feed competency, and may serve as a powerful clinical marker for neurodevelopmental outcomes as well [26]. Research has shown that infants with perinatal distress and neurologic impairments demonstrate a significantly slower mean rate and greater variability of non-nutritive suck [27]. Also, children with severe neurodevelopmental problems at 18 months tend to have had arrhythmic nutritive expression/suction patterns as premature infants [26].

SUCK CENTRAL PATTERN GENERATOR

The mammalian suck is the earliest appearing somatic motor rhythm and is primarily controlled by the suck central pattern generator (sCPG), which consists of bilateral, linked internuncial circuits within the brainstem pontine and medullary reticular formation [28-30] (Figure 1). Based on animal models, the minimal circuitry for ororhythmic activity resides between the trigeminal motor nucleus and the facial nucleus in the brainstem [30]. The sCPG is centrally modulated by multiple inputs, including descending pathways from sensorimotor cortex, and reciprocal connections with the cerebellum which serve to modulate ororhythmic activity. The sCPG can also be modified by sensory input arising from oral mechanoreceptors that encode the consequences of oral movements and external stimulation (i.e., breast, pacifier or bottle nipple, touch, thermal) along central pathways of the trigeminal system. Suck entrainment has been demonstrated in term infants through 6 months of age using a patterned orocutaneous stimulus delivered to perioral and intraoral tissues [31]. Entrainment is defined as the phase locking of centrally-generated suck motor patterns to an applied external stimulus, and represents a powerful method of achieving neural synchrony among sensorimotor pathways. Therefore, it is not surprising that stimulation of the lips and tongue are common methods used to evoke sucking behaviors [9,32].

OROMOTOR ENTRAINMENT: NTRAINER™

These fundamental neurophysiologic principles underlying ororhythmic output and sensorimotor entrainment of the human suck have been translated to a new application for preterm infants who exhibit poor suck and feeding difficulties. A new biomedical device, known as the NTrainer™, was developed in our laboratory. The NTrainer™ was specially designed to synthesize pneumatic pulse trains through a pressurized Soothie® silicone pacifier (Children’s Medical Ventures) which is presented to the infant for alternating 3-minute stimulus epochs during nasogastric gavage (NG) feeds in the NICU. The novel orosensory experience afforded by the NTrainer™ mimics the spatiotemporal dynamics of non-nutritive suck, and has been correlated to rapid organization of suck in infants who exhibit poor feeding skills [33].

The NTrainer™ system consists of a servo-controlled pneumatic actuator and microprocessor that dynamically modulate intraluminal pacifier pressure, and two real-time software modules: (1) NeoSUCK RT™, designed to perform semi-automated digital sampling and analyses of the infant's non-nutritive suck and ororhythmic patterning at cribside in the NICU, and (2) NTrain™, designed to deliver patterned orocutaneous stimulation to the infant either during NG or immediately before a scheduled feed (breast/bottle).

NNS Assessment

The NNS compression pressure waveforms are digitized periodically (daily recommended) from each infant at cribside 15 minutes prior to a scheduled feed using the mobile NTrainer System™ run...
Following a brief examination of physiologic state by the NICU nursing staff, infants are held in a developmentally supportive semi-inclined posture (Figure 3). Background/overhead lighting is dimmed in the immediate area to promote eye contact between the NICU nurse or developmental feeding specialist and the infant. Sampling of NNS behavior is not initiated until the infant achieves an optimal behavioral state, i.e., drowsy to active alert (state 3, 4, or 5 as described by the Naturalistic Observation of Newborn Behavior, Newborn Individualized Developmental Care and Assessment Program; NIDCAP) [34]. Up to five minutes of NNS behavior is typically digitized for each infant per session.

A sample output from the NeoSuck RT™ is shown for a healthy preterm infant at 35 weeks PMA (Figure 4) and a tube-fed RDS preterm infant at 35 weeks PMA (Figure 5). The real time display provides the clinician with the NNS compression waveform and associated histogram updates for suck amplitude (cmH₂O), inter-NNS burst pause periods (sec), and intra-NNS burst suck cycle periods (sec). For the healthy preterm infant, well-organized NNS bursts with peak pressures averaging 25 cmH₂O alternate with pause periods of approximately 5.5 seconds. The NNS cycle count for the complete sample is 251. In contrast, the dissolution of the NNS burst structure for the tube-fed RDS infant corresponds to a disorganized nipple compression pattern and indistinguishable NNS bursts. The amplitude of oral compression output is likewise reduced to approximately 5 cmH₂O, with NeoSuck RT™ able to identify just 65 compression cycles in the total sample of digitized records.

NTrainer™ Patterned Orocutaneous Stimulus Regimen

Infants assigned to the NTrain™ regimen receive alternating 3-minute epochs of patterned oral somatosensory stimulation during gavage feeds using the NTrainer™ device. The patterned
Designed by clinicians to meet the needs of clinicians

Clinical management software which brings together patient information across the continuum of care, from the mom’s pregnancy through the infant’s developmental care.

- Centralized access to all your perinatal and neonatal data
- Standardized, legible medical documentation
- Automated state and regulatory reporting
- Interfaces with ADT, Lab, EMR and other major hospital information systems

“the most comprehensive and innovative solution in the market”

Frost & Sullivan

The San Francisco-based firm is a market leader in perinatal and neonatal healthcare software. For the last 15 years, top healthcare institutions have been managing their Newborn Intensive Care Units with the Site of Care solutions.

“Site of Care Systems’ state-of-the-art solutions ... across all the critical areas of care – ante partum, labor and delivery, nursery, and developmental follow-up ... capture all clinical and operational data related to the child and the mother ... providing a seamless platform within the NICU”

Antepartum Testing Center • Daily Baby Center • Perinatal Data Center • Infant Development Center

soc@siteofcare.com www.siteofcare.com 1-800-997-6861
oral cutaneous stimulation has been programmed to mimic the temporal features of NNS. As shown in Figure 6, precision stimulus control is achieved with a custom designed servo linear motor (H2W Technologies, Inc.) operating under position feedback and coupled in series with a pneumatic Airpel® actuator and the pacifier receiver. The device includes an MTS® sensor for position feedback control, which is essential for precision stimulus control at the infant’s face. A 16-bit digital-to-analog converter is used to synthesize an orocutaneous pneumatic pulse train which consists of a series of 6-cycle bursts and 2-second pause periods. Individual cycles within-burst were presented at 1.8 Hz. This synthetic pulse train is used to drive the servo motor to modulate the intraluminal pressure and shape of the infant’s Soothie® silicone pacifier (Children’s Medical Ventures, Respironics, Inc.). As shown in Figure 7, the changes in intraluminal pressure yield a radial expansion of the pacifier nipple of approximately 135 microns within a 25 millisecond rise/fall time. This novel instrumentation transforms the infant’s pacifier into a “pulsating nipple” that resembles the temporal pattern of a well-formed NNS burst. A total of 34 synthetic NNS burst-pause trains are presented to the infant during a single 3-minute NTrain™ session. Infants are typically treated with the NTrainer™ stimulus three to four times per day during scheduled gavage feeds over a 10-day period, or until the infant attains 90% oral feeds for two consecutive days.

Advanced NNS Digital Signal Processing

In our studies of NNS fine structure [35-37], two-minute samples reflecting the most active period of NNS behavior generated by the preterm infant are selected from each data file based on a waveform discrimination-pressure threshold detection algorithm in the NeoSuck™ software program to index pressure peaks at a user-defined pressure threshold. Identification of the time-amplitude intercepts for individual pressure peaks is achieved by calculation of the first derivative of the pressure signal. Zero-crossings in the pressure derivative function along with a pressure recruitment rate and hysteresis function are used to index nipple compression pressure peaks in the digitized waveforms. This algorithm permits objective identification of NNS burst activity as distinct from non-organized mouthing compressions. Six objective measures can be extracted from indexed records of suck, including the following minute-rate variables: (1) Total Compressions, defined as the sum of all pressure events per minute, (2) Non-NNS Events, defined as nipple compression pressure events not associated with an NNS burst sequence, (3) NNS Cycles, defined as suck compression cycles with cycle periods less than 1000 milliseconds AND occurring within the NNS burst structure per minute, and (4) the number of NNS Bursts that consisted of two or more nipple compression cycles. The two remaining salient NNS performance measures include (5) mean number NNS Cycles/Burst and (6) a ratiometric calculation known as NNS Cycles%Total, defined as NNS Cycles expressed as a percentage of total nipple compressions ([Burst-related NNS Cycles/Total Mouthing Events] x 100).

NNS Spatiotemporal Index

Our physiological approach to the assessment and habilitation of suck in the NICU includes a functional assessment of the integrity of the neural circuitry driving the suck central pattern generator through an analysis of suck pattern structure and stability. Coordinated non-nutritive suck that is minimally variable from burst-to-burst indicates motor system integrity and is an important foundation for coordination with other emergent behaviors, such as swallow and respiration. A highly promising digital signal processing technique known as the Non-Nutritive Suck Spatiotemporal Index (NNS STI) has been developed to quantify the emergence of stable non-nutritive suck in preterm infants. The mathematical tenets underlying this computational technique have been used successfully to assess kinematic variability and pattern...
The Fifth Annual Evidence vs Experience in Neonatal Practices

ANNUAL NEONATAL PRACTICES CONFERENCE
SCHEDULED FOR CHICAGO ON JUNE 20-21, 2008

The target audience for this important conference includes physicians, nurse practitioners, nurses and other clinicians caring for preterm infants. The faculty will encourage the audience to participate fully in the program, interacting with not only the speakers but also with one another, and offering their own insights and perspectives into recent research and patient care in neonatal medicine. An Audience Response System will be used to help determine what participants have learned.

This annual conference will be co-sponsored by the Annenberg Center for Health Sciences at Eisenhower and the Keck School of Medicine of USC and supported by an independent educational grant from DEY, L.P.

To register online for Evidence vs. Experience in Neonatal Practices®, or for additional conference information, program updates, and accreditation information, visit the conference. Website: www.5StarMedEd.org/neonatal.

Questions about this event can be addressed to the Annenberg Center for Health Sciences at Eisenhower by calling Nina Pratt at 800-321-3690 (toll-free) or 760-773-4500 (8 a.m. to 5 p.m. Pacific time).

Introduction

In 2004, there were more than half a million preterm births in the US (about 12.5% of live births). The problems encountered by a premature infant are related to the immaturity of the organ systems. The infant requires specialized care until his or her organ systems have developed enough to sustain life without specialized support. Depending on the extent of prematurity, this may take weeks to months. This meeting will continue the examination of newly developing treatment options for these problems, while reviewing current evidence for treatment protocols. International thought leaders in the field will help clarify desired and efficacious treatment options.

Learning Objectives

Upon completion of this activity, participants should be better able to:

1. Apply critical nutritional care to their preterm infants
2. Incorporate current knowledge of surfactants into practice
3. Utilize appropriate interventions for hemodynamic problems
4. Provide appropriate ventilator care to preterm infants

Accreditation and Certification

The Annenberg Center for Health Sciences at Eisenhower is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The Annenberg Center designates this educational activity for a maximum of 11.25 AMA PRA Category 1 Credits™. Physicians should only claim credit commensurate with the extent of their participation in the activity.

Annenberg Center for Health Sciences is approved as a provider of nurse practitioner continuing education by the American Academy of Nurse Practitioners. Provider # 040207. The Annenberg Center designates this program for 11.25 contact hours of continuing education.

Annenberg Center for Health Sciences is accredited as a provider of continuing nursing education by the American Nurses Credentialing Center’s Commission on Accreditation.

A maximum of 11.25 contact hours may be earned for successful completion of this activity.

Statements of Credit will be provided by mail following activity participation, and upon completion and return of the evaluation form at the meeting or to the Annenberg Center for Health Sciences (# 4614), 39000 Bob Hope Drive, Rancho Mirage, CA 92270 or by FAX to 760-773-4550. Please allow 4-6 weeks for the delivery of your statement.

Disclosure

It is the policy of the Annenberg Center to ensure fair balance, independence, objectivity, and scientific rigor in all programming. All faculty participating in sponsored programs are expected to identify and reference off-label product use and disclose any significant relationship with those supporting the activity or any others whose products or services are discussed. Full disclosure will be made in the syllabus.

If you need reasonable, special accommodations or have questions about access to any of our activities, please contact Nina Pratt, by phone at 800-321-3690, by fax at 760-773-4550, or by e-mail at registration@annenberg.net. All requests must be received at least 14 days in advance of the intended activity start date.
formation in limb [38,39] and speech [40,41] motor subsystems. The NNS STI provides the clinician with a single numerical value, calculated from the cumulative sum of the standard deviations of an amplitude- and time-normalized set of suck pressure waveforms, and represents the stability of the infant’s oromotor sequence. In essence, this measure provides a quantitative composite index of non-nutritive suck pattern stability. This metric eliminates the need to count suck pressure peaks or measure individual cycle periods. Instead, the Non-Nutritive Suck Spatiotemporal Index is designed to quantify the infant’s suck over a selected burst pattern epoch, thereby providing NICU clinicians with a summative index or ‘gestalt’ of oromotor pattern formation and stability. Obtaining a two-minute sample of NNS behavior daily in the NICU with the NTrainer™ cribside system is sufficient to chart an infant’s progress toward stable suck production [42].

The NNS STI measure has also been used successfully to document the effects of the NTrainer™ patterned orocutaneous therapy on suck development among tube-fed premature infants with respiratory distress syndrome who have endured, on average, 40 days of oxygen supplementation therapy [43]. An example of suck pattern formation at 35 and 38 wks PMA is shown for two tube-fed RDS infants designated as Control (Figure 8A) and NTrainer™ (Figure 8B). The Control infant was given a regular Soothie® pacifier during gavage feeds, whereas the NTrainer™ infant received the patterened orocutaneous stimulation through the pressurized Soothie® silicone pacifier, all other conditions being equal. For Figures 8A and 8B, the upper panels include 5 superimposed raw NNS waveforms. The lower panels in each figure show the result of the waveform normalization associated with the NNS STI digital signal process, along with the Spatiotemporal Index value. A higher value translates to poor suck burst pattern formation, whereas a lower value indicates suck burst pattern stability. As shown for the Control infant who did not receive NTrainer™ therapy, a small gain (STI=89 @ 35 wks PMA versus STI=81 @ 38 wks PMA) was apparent in the NNS burst pattern, whereas the NTrainer™ infant manifests remarkable improvement (STI=99 @ 35 wks PMA versus STI=50 @ 38 wks PMA) in suck pattern formation and stability of the NNS burst.

SUMMARY AND CONCLUSIONS

Fortunately for the human infant, the brainstem sCPG is responsive to peripheral input [28,31,32] and adapts to changes in the local oral environment [37]. The collective results from studies in our laboratory demonstrate the potent effects of a motorized silicone pacifier nipple on the development of NNS in preterm infants. The patterned orocutaneous experience is physiologically salient and spectrally patterned to resemble the ‘burst-pause’ structure of the NNS. This form of stimulation serves to entrain the activity patterns of populations of mechanoreceptor afferents located in the lips, tongue, and jaw of the neonate, which in turn influence the firing patterns of the respective orofacial lower motor neurons. This is a central tenet of one of the basic principles of pathway formation, namely ‘neurons that fire together, will wire together’ [44].

The application of mechanosensory entrainment as a habilitation strategy has ecological validity in assisting the infant to produce appropriate oromotor output. Moreover, this approach is consistent with contemporary ideas on the role of sensory-driven neural activity in pathway formation [45,46], and the notion that appropriate oral experiences may be critical in the final weeks of gestation for the formation of functional central neural circuits.

The richness of the patterned orocutaneous experience offered by the NTrainer™ presents a new and exciting neurotherapeutic application for the habilitation of suck in premature infants in the NICU [47]. Repeated exposure to patterned orocutaneous events, on the order of 30 minutes per day in the NICU concurrent with NG tube feeds over the course of 7 to 10 days, provides the preterm infant with a neural entrainment experience.
that facilitates the development and strengthening of central pathways that regulate suck. Use of an orocutaneous entrainment stimulus also has the distinct advantage of being safe and pleasurable for the neonate, and easily administered by the physician-provider-parent teams in the NICU. Establishing the non-nutritive suck provides the infant with additional benefits, including improved state control pre-feed [18,20,48-50] and post-feed [51], growth, maturation, and gastric motility, while decreasing stress and enhancing the transition to oral feeds [22].

Establishing the NNS with patterned orocutaneous stimulation promotes the development of specific sucking skills [9,10], provides the infant a significant advantage in the transition from tube to independent oral feeding, and is presumed to enhance the maturation of neural systems regulating ororhythmic activity [23-25].

The NTrainer™ system has received the 510K certification from the United States Food and Drug Administration and is being commercially developed by KC BioMedix, Inc. (23733 West 83rd Terrace, Shawnee, KS 66227; Michael Litscher, CEO; mlitscher@kcbiomedix.com; TL: 913 585 3500; FX: 913 585 3501; CL: 913 515 0116), with patent licensing through the University of Kansas. Phase II randomized clinical trials are currently underway at two centers, including Wake Medical Center in Raleigh, North Carolina and Overland Park Regional Medical Center in Overland Park, Kansas. These trials will explore issues of feeding readiness and oral feed competence in preterm infant populations at-risk for feeding disorders and poor neurodevelopmental outcome.

ACKNOWLEDGEMENT

This work was supported by grants NIH R01 DC03311-06 (SM Barlow), NIH P30 HD02528, and NIH P30 DC005803.
REFERENCES

25. Measel CP, Anderson GC. Nonnutritive sucking during tube feedings:

The Barth Syndrome Foundation

P.O. Box 974, Perry, FL 32348
Tel: 850.223.1128 info@barthsyndrome.org www.barthsyndrome.org
Symptoms: Cardiomyopathy, Neutropenia, Muscle Weakness, Exercise Intolerance, Growth Retardation

It's about FREEDOM.

Your FREEDOM, as a physician to practice quality medicine.

At Weatherby Locums, we offer neonatal locum tenens opportunities nationwide. Leave the administrative headaches behind and be free to do what you do best—take good care of your littlest patients.

Call a personal consultant today. 866.680.3927

Get your FREE booklet about the benefits of working locum tenens. Call now!
Salary Survey - Sponsored by TIVA HealthCare, Inc.

Please complete the following survey and FAX this page to: 1-240-465-0692

How does your salary compare with your peers? Please complete the following anonymous salary survey. We will publish the findings in a follow-up article on salary levels in Neonatology.

1. How many years has it been since your Fellowship? __________ Years

2. Are you Board Certified in Neonatology (Place an “X” in the appropriate box)?
 a[] Yes b[] No c[] In the process of becoming B/C

3. In terms of your compensation, what is your base salary? $______________________________

3A. How much is your bonus? $______________________________

4. What type of position do you hold (check all that apply)?
 a[] Academic b[] Clinical

5. What type of healthcare benefits do you receive (check all that apply)?
 a[] Healthcare c[] Dental
 b[] Vision d[] None

6. If you receive healthcare, is it (check one)?
 a[] Individual Only b[] Family

7A. Is your healthcare (check one)
 a[] Fully Paid by Employer b[] Partially Paid by Employer

7B. How many vacation weeks per year do you get? __________ Weeks

8. Do you get a CME allowance (check one)?
 a[] Yes b[] No
 If yes, how much? $______________________________

9. Is your Malpractice Insurance paid by your employer (check one)?
 a[] Yes b[] No c[] Partially paid

10A. What type of Retirement Plan do you have through your place of employment (check one)?
 a[] 401K b[] 401B c[] Other d[] None

10B. What is the approximate value of your employer’s participation in your retirement? $______________________________

11. How many years have you been at your current place of employment? __________ Years

12. For demographic analysis only, what is your 5-digit residential (home) Zip or postal code? ___________

13. Optional: Do you have any additional comments you would like to share: ________________________________
 __

Thank you,
Research Department
Neonatology Today

Salary Survey Sponsored by

Thank you,
Research Department
Neonatology Today

www.TIVAH ealthCare.com
800-506-8482

www.NeonatologyToday.net
Emergency Physicians guidelines. They were aware of the American Academy of Pediatrics/American College of Emergency Physicians for pediatric patients, and 59% said they were prepared to improve or perform better. The vast majority reported they had a quality improvement system in place. However, the study found that only 6% of the 1,489 emergency rooms that responded to the survey had all the medical and equipment the American Academy of Pediatrics (AAP) and the American College of Emergency Physicians (ACEP) recommend. Hospitals that were more prepared tended to be urban, to have higher volumes, to have a separate care area for pediatric patients, to have physician and nursing coordinators for pediatrics, to be aware of the AAP/ACEP guidelines, and to be interested in guideline implementation, the researchers concluded. The study also demonstrates that much work is left to be done to improve pediatric preparedness of (Emergency Departments) EDs. Additional work should explore the relationship of preparedness to quality of care delivered, delineate barriers to guideline implementation, and identify best practices that can be coordinated within emergency care systems to improve the preparedness of EDs to care for children.

LA BioMed Researchers Find Few Emergency Rooms Fully Equipped for Pediatric Patients

In the first survey to specifically measure hospital pediatric preparedness, a team of Los Angeles Biomedical Research Institute (LA BioMed) researchers found few U.S. emergency rooms are properly equipped for children.

The survey by Drs. Marianne Gausche-Hill, Charles Schmitz and Roger J. Lewis was reported in the December issue of Pediatrics, the peer-reviewed journal of the American Academy of Pediatrics. The team of LA BioMed researchers found only 6% of the 1,489 emergency rooms that responded to the survey had all the medicine and equipment the American Academy of Pediatrics (AAP) and the American College of Emergency Physicians (ACEP) recommend.

For instance, half of those responding reported that they were missing the laryngeal airways mask used for ventilating children.

Seventeen percent of the hospitals that responded to the survey did not have Magill forceps for removing foreign bodies from a child’s airway, said Dr. Gausche-Hill. This equipment may be life-saving, so this study highlights important issues for patient safety.

The study found 89% of pediatric (ages: 0-14 years) emergency department visits occur in non-children’s hospitals. About a fourth of these visits take place in rural or remote facilities. Only 6% occur in a separate pediatric emergency department.

More than half the emergency departments reported they had a quality improvement or performance improvement plan for pediatric patients, and 59% said they were aware of the American Academy of Pediatrics/American College of Emergency Physicians guidelines.

Caffeine Use to Regulate Breathing of Very Preterm Babies, Long-term Benefits

Very premature babies who were given caffeine to regulate their breathing have a significantly lower incidence of disabilities at the age of two years, according to an international study led by researchers at McMaster University, Hamilton, ON, Canada.

Researchers studied more than 2000 premature babies who were either treated with caffeine or given a placebo. The latest results of this large clinical trial will appear in the Nov. 8 issue of the New England Journal of Medicine (NEJM). Babies receiving the caffeine were less likely to develop cerebral palsy and cognitive delay.

Caffeine and similar drugs have been used for more than 30 years to make the breathing of very preterm babies more regular, but without sufficient knowledge of the possible benefits and risks.

The study involved infants who weighed between 500 and 1250 grams at birth, and who were at risk of apnea — interrupted or irregular breathing due to immaturity. The ongoing study, with colleagues in Canada, Australia, the US, Europe and Israel, will continue to follow the children until they reach the age of five. The project is funded by the Canadian Institutes of Health Research and the National Health and Medical Research Council of Australia.

According to Dr. Barbara Schmidt, the principal investigator of the research project, the latest results of the study showed that 46% of the infants receiving the placebo died or survived with a neurodevelopmental disability. Among the babies receiving caffeine therapy, only 40% had an unfavourable outcome by the time they reached the end of their second year of life.

It definitely gives hope to parents, Dr. Schmidt concluded. Of all the drugs we use in the neonatal intensive care unit, caffeine is the first to have been shown conclusively to reduce long-term disability in very preterm babies. Caffeine reduced the rates of cerebral palsy and cognitive delay but had no significant effect on the rates of death, bilateral blindness and severe hearing loss.

About LA BioMed

Founded more than 55 years ago, LA BioMed conducts biomedical research, trains young scientists and provides community services, including childhood immunization, nutrition assistance and anti-gang violence programs. The institutes researchers conduct studies in such areas as cardiovascular disease, emerging infections, cancer, diabetes, kidney disease, dermatology, reproductive health, vaccine development, respiratory disorders, inherited illnesses and neonatology.

www.LABioMed.org
“This international study provides important follow-up to the earlier results reported by Dr. Schmidt and her colleagues and should have a major impact on the treatment and prevention of apnea in preterm infants,” said Dr. Michael Kramer, Scientific Director of the CIHR Institute of Human Development, Child and Youth Health.

The Caffeine for Apnea of Prematurity (CAP) project enrolled 2006 premature infants who were born between October 1999 and October 2004 in nine countries. The research project was designed to address long-standing concerns about possible adverse effects of caffeine therapy in pre-term infants. All children will be re-assessed at five years to obtain more precise information on their development as they approach school age.

Apnea occurs in about 85% of infants who are born at less than 34 weeks gestation. For more than 30 years, therapies known as methylxanthines, including caffeine, have been used to reduce the frequency of apnea and the need for mechanical ventilation. However, it has remained uncertain whether the use of methylxanthines has any additional benefits or risks in premature infants.

Earlier findings released last year by the same research team revealed that babies who received caffeine had a lower incidence of abnormal lung development than infants who were given a placebo.

Dr. Schmidt said that half of the beneficial treatment effect at two years of age was explained by the fact that babies receiving caffeine therapy came off ventilators sooner. Ventilation is a double-edged sword, she said. While it is life-saving, at the same time, it causes injury scarring the immature lung which is very susceptible to damage.

At McMaster, Dr. Schmidt is a part-time professor in the department of clinical epidemiology and biostatistics of the Michael G. DeGroote School of Medicine. She is also a professor of pediatrics at the University of Pennsylvania School of Medicine and will hold the inaugural Kristine Sandberg Knisely Chair in Neonatology at the Children’s Hospital of Philadelphia.

Do you or your colleagues have interesting research results, observations, human interest stories, reports of meetings, etc. that you would like to share with the neonatology community?

Submit a brief summary of your proposed article to Article@Neonate.biz

The final manuscript may be between 400-3,500 words, contain pictures, graphs charts and tables.

Do You Want to Recruit a Neonatologist or Perinatologist?
Advertise in Neonatology Today, the only monthly publication dedicated to neonatology and perinatology. For more information send an email to: TCarlsonmd@mac.com
FOLLOW YOUR DREAMS.

WE’LL HELP YOU FIND THE WAY.

Enjoy a fulfilling career with Sheridan Children’s Services, one of the nation’s leading providers of neonatology and hospital-based pediatric services.

We are currently recruiting Neonatologists for positions in Florida, New Mexico and Texas.

Available Opportunities in these Locations and More:

- FORT LAUDERDALE, FL
- PANAMA CITY, FL
- ALBUQUERQUE, NM
- DALLAS, TX

WE OFFER:

- Quality of Life
- Flexibility
- Growth Opportunities
- Excellent Compensation
- Benefit Package for Full-Time Employees
- Full & Part-Time Opportunities
- Professional Liability Coverage

To view all of our opportunities visit our online career center www.sheridanhealthcare.com. You may also contact us at 800.816.6791 or email us at recruitment@shcr.com.
So far, 115 hospitals across the nation have increased reimbursement for INOmax® (nitric oxide) for inhalation. Is your hospital one of them?

Our team can help you identify the information you need to seek and obtain appropriate payment. To learn more, please contact IKARIA™ and the INOtherapy Reimbursement Service at 1-877-KNOW-INO (1-877-566-9466) or visit our Web site at INOmax.com