Rejoinder to the Response to ‘Comment on a recent conjectured solution of the three-dimensional Ising model’

F.Y. Wua, B.M. McCoyb, M.E. Fisherc* and L. Chayesd

aDepartment of Physics, Northeastern University, Boston, USA; bC.N. Yang Institute for Theoretical Physics, State University of New York, New York, USA; cInstitute for Physical Science and Technology, University of Maryland, MD, USA; dDepartment of Mathematics, University of California, Los Angeles, USA

(Received 30 September 2008; final version received 3 October 2008)

We add here a few sentences concerning the author’s Response [1] to our Comment [2] criticizing his original claims regarding his conjectured solution of the three-dimensional Ising model [3].

First, we stand by our summary in [2], where the main purpose was to refute claims made in [3] on the basis of a putative 4-dimensional integral representation. In summarizing his rebuttal, Professor Zhang now admits that “more research” is needed.

He goes on, however, to assert that “the correct reproduction of the high-temperature expansion cannot be a coincidence.” We consider this remark to be quite misleading: indeed, we point out in [2] that the reproduction of the high-T series in [3] is merely a fit of 11 unknown expansion coefficients (for the weights w_y and w_z) to ensure agreement with the 11 exactly known high-T terms. Notably, no further high-T series coefficients are proposed in [3]; however, since this fit turns out to play no further role, it remains true that the conjectured solution does not reproduce the exact high-T expansion.

We do not find the majority of the issues addressed in the Response to be relevant to our disproof of [3], which also stressed the failure of the conjectured solution to generate the correct low-T expansions. In our view, a refusal to accept the conclusions of the rigorous work (cited in [2]) for the applicability of the long-known expansions – at high enough and low enough T – to the exact solution for the thermodynamic limit, constitutes a denial of the mathematical basis of statistical mechanics.

References

*Corresponding author. Email: xpectnil@umd.edu