Yang-Lee Edge in the High-Temperature Limit

F. Y. Wu

Institute of Physics, Academia Sinica
Nankang, Taipei 11529, Taiwan, R.O. C.

(Received June 4, 1990)

For Ising ferromagnets on two 4-coordinated lattices in 2 and 3 dimensions we use an exact transformation of the partition function to show that the length of the arc segment of the unit circle containing Yang-Lee zeros behaves as A/\sqrt{T} at high temperatures T. Our consideration leads to a new lower bound on the amplitude A.

Yang and Lee\cite{1,2} pointed out that zeros of the partition function of an Ising ferromagnet lie on the unit circle

$$z = e^{i\theta}, \quad -\pi < \theta \ll \pi$$

in the complex $z = e^{-2H}$ plane, where H is the reduced external magnetic field. At infinite temperature ($T = \infty$) the spins are noninteracting and the partition function reduces to $(z^{1/2} + z^{-1/2})^N$, where N is the total number of spins. The zeros are therefore N-fold degenerate at $\theta = \pi$. As the temperature is lowered, the zeros spread into an arc segment of the unit circle centered about $\theta = \pi$ and extending between two Yang-Lee edges at $\theta(T) = \pm[\pi - \frac{1}{2}\Delta(T)]$. The length $A(T)$ of the arc segment grows as the temperature is lowered, eventually reaching $A(T_c) = 2\pi$ (zeros distributed over the whole unit circle) at the critical temperature T_c. While the precise expression of $A(T)$ remains unknown,\cite{4} Kurtze and Fishers have argued from a consideration of the high-temperature series expansion that at high temperatures the gap width behaves as

$$\Delta(T) = A/\sqrt{T}, \quad T \to \infty$$

In addition, upper and lower bounds on $A(T)$ have also been obtained.\cite{6}

In this note we use an exact transformation of Ising partition functions to explicitly establish the high-temperature behavior (1) for two 4-coordinated lattices in 2 and 3 dimensions. We also obtain a new lower bound on the amplitude A, which is better than that obtained previously.\cite{6}

In two dimensions we establish Eq. (1) for the Kagomé lattice. But we consider first a
related honeycomb lattice with reduced nearest-neighbor interactions K and an external magnetic field $H = -i\theta \theta^2$ where $\theta = \text{real}$. It is convenient to introduce the real variables

$$ x = e^{2K} \cos(\theta/3) \quad y = e^{2K} \sin(\theta/3), $$

or, equivalently, $e^{4K} = x^2 + y^2$, $\theta/3 = \tan^{-1}(y/x)$, and consider the regime in the xy-plane (see Fig. 1) in which zeros of the Ising partition function lie. In these variables the azimuth angle of a point in the xy-plane is precisely $\theta/3$.

We now consider a Kagomé Ising model of N sites related to the honeycomb lattice by a decoration and star-triangle transformation. Since this relation is standard, we quote only the final resulting expression:

$$ Z_{\text{Kag}}(h, R) = (2e^R \cosh L)^{-2N^3}(2e^K \cosh H)^N Z_{\text{HC}}(H, K) $$

Here, R and h are, respectively, the reduced nearest-neighbor interaction and the magnetic field of the Kagomé Ising model, and Z_{Kag} and Z_{HC} are the respective partition functions. The Ising parameters in Eq. (3) are related by

$$ e^{4K} = 1 + (\sinh 2L/\cosh h)^2 $$

$$ e^{4H/3} = \cosh(h + 2L)/\cosh(h - 2L) $$

FIG. 1. Regime of Yang-Lee zeros. All zeros are distributed continuously in the shaded region.

As indicated by Eq. (2), the constant temperature K loci for the honeycomb lattice are concentric circles in the xy-plane centered about the origin. At infinite temperature ($K = 0$) the locus is the circle $r = e^{2K} = 1$, and the zeros are all located at $\theta = \pi$, or $\theta/3 = 60^\circ$, the point A in Fig. 1. The loci for fixed but finite K are circles of radii $r > 1$, on which zeros are distributed in a segment extending from the line $\theta/3 = 60^\circ$ to a Yang-Lee edge. The size of the segment grows as the temperature is lowered, eventually reaching the x-axis at the critical temperature $e^{2K_c} = 2 + \sqrt{3}$, the point B in Fig. 1. Thus, the Yang-Lee edge traces out a continuous Yang-Lee boundary connecting A and B, with zeros distributed continuously above it in the shaded region in Fig. 1.

We now consider a Kagomé Ising model of N sites related to the honeycomb lattice by a decoration and star-triangle transformation. Since this relation is standard, we quote only the final resulting expression:

$$ Z_{\text{Kag}}(h, R) = (2e^R \cosh L)^{-2N^3}(2e^K \cosh H)^N Z_{\text{HC}}(H, K) $$

Here, R and h are, respectively, the reduced nearest-neighbor interaction and the magnetic field of the Kagomé Ising model, and Z_{Kag} and Z_{HC} are the respective partition functions. The Ising parameters in Eq. (3) are related by

$$ e^{4K} = 1 + (\sinh 2L/\cosh h)^2 $$

$$ e^{4H/3} = \cosh(h + 2L)/\cosh(h - 2L) $$

FIG. 1. Regime of Yang-Lee zeros. All zeros are distributed continuously in the shaded region.

As indicated by Eq. (2), the constant temperature K loci for the honeycomb lattice are concentric circles in the xy-plane centered about the origin. At infinite temperature ($K = 0$) the locus is the circle $r = e^{2K} = 1$, and the zeros are all located at $\theta = \pi$, or $\theta/3 = 60^\circ$, the point A in Fig. 1. The loci for fixed but finite K are circles of radii $r > 1$, on which zeros are distributed in a segment extending from the line $\theta/3 = 60^\circ$ to a Yang-Lee edge. The size of the segment grows as the temperature is lowered, eventually reaching the x-axis at the critical temperature $e^{2K_c} = 2 + \sqrt{3}$, the point B in Fig. 1. Thus, the Yang-Lee edge traces out a continuous Yang-Lee boundary connecting A and B, with zeros distributed continuously above it in the shaded region in Fig. 1.
with
\[\cosh 2L = \frac{e^{4R} + 1}{2} \]
(5)

Using Eq. (4), Eq. (2) can be rewritten as
\[x = \cosh 2L, \quad y = i \sinh 2L \tanh h. \]
(6)

While the transformation Eq. (3) holds quite generally for real and complex \(h \) and \(R \), for \(x \), \(y \) real as dictated by Eq. (2), Eqs. (5) and (6) imply either \(R < 0, 0 < x < 1, L = \text{imaginary}, h = \text{real} \), or \(R > 0, x > 1, L = \text{real}, h = \text{imaginary} \). Furthermore, the transformation Eq. (3) maps every zero of \(Z_{HC} \) onto a zero of \(Z_{Kg} \) and vice versa (albeit not necessarily one-one). It follows that zeros of the two partition functions coincide and are confined by the same Yang-Lee boundary. We can then apply the boundary in Fig. 1 to the Kagomé lattice.

For \(R < 0 \) it is known that the Kagomé partition function is free of zeros for real \(h \), a fact consistent with the regime of the zero distribution shown in Fig. 1. For fixed ferromagnetic \(R > 0 \), zeros of the partition function are distributed on lines \(x = \text{constant} \). Particularly, the locus \(R = 0 \) corresponds to \(x = 1 \), and the Yang-Lee edge of the Kagomé Ising lattice approaches the point \(C \) in the infinite temperature \((R = 0) \) limit. Writing the magnetic field of the Kagomé lattice as
\[h = -i\phi/2, \]
(7)

where \(\phi = \text{real} \), we obtain from Eq. (6)
\[\lim_{T \to \infty} [\sinh 2L \tan(\phi/2)] = y_0, \]
(8)

where \(y_0 \) is the coordinate of the point \(C \). Substituting \(\phi = \pi - \frac{1}{2} \Delta(T) \) and expanding for small \(\Delta(T) \), we obtain from Eq. (8) the expression
\[\Delta(T) = \frac{8}{y_0} \frac{\sqrt{T}}{kT}, \quad T \to \infty \]
(9)

where \(J \) is the Kagomé Ising interaction. Now, \(\phi \) is monotonically decreasing in \(L \). This implies that \(y_0 \) is monotonically decreasing in \(x \), and thus, from Fig. 1, \(y_0 < \sqrt{3}/2 \). Using this last inequality and comparing Eq. (9) with Eq. (1), we are led to
\[A > 16 \sqrt{\frac{1}{3k}}. \]
(10)

This is a lower bound of the amplitude \(A \), which is better than the bound \(A > \frac{8\sqrt{J}}{J/k} \) derived previously for 4-coordinated lattices.\(^6\)

In 3 dimensions we consider a 3-coordinated hydrogen-peroxide lattice.\(^9,10\) The same sequence of decoration and star-triangle transformations transform the hydrogen-peroxide
lattice into a hyper-Kagomé lattice which is 4-coordinated.” Then, the same analysis can be carried through and, as a result, we establish the high-temperature behavior Eq. (1) and the bound Eq. (10) for the hyper-Kagomé lattice.

ACKNOWLEDGMENTS

I would like to thank P. T. Chang and L. H. Gwa for very helpful discussions. This work is supported in part by the National Science Council of the Republic of China and the U.S. National Science Foundation.

REFERENCES

* Permanent address: Department of Physics, Northeastern University, Boston, MA 02115, USA.