Some rigorous results for the vertex model in statistical mechanics

H. J. Brascamp* and H. Kunz†

Institut des Hautes Études Scientifiques, 91 Bures-sur-Yvette, France

F.Y. Wu‡

Department of Physics, Northeastern University, Boston, Massachusetts 02115

(Received 28 June 1973)

It is shown that the free and periodic boundary conditions are completely equivalent for the ice-rule (six-vertex) models in zero field. With an external direct or staggered field, we establish that in an ice-rule model the free and periodic boundary conditions are equivalent, and also equal to some special boundary conditions, either at sufficiently low temperatures or with sufficiently high fields in the appropriate direction. Regions of constant direct polarization are found. We also establish the existence of the spontaneous staggered polarization in an antiferroelectric using the Peierls argument.

I. INTRODUCTION

We consider in this paper some outstanding unsolved problems in the vertex models in statistical mechanics. One problem whose solution has proven to be elusive in the past is the proof of the equivalence of the free and periodic boundary conditions for the six-vertex (ice-rule) models. In the solution of the ice-rule models obtained by Lieb, it is crucial that a periodic boundary condition is used. Attempts in trying to show that the free boundary condition would yield the same solution have not succeeded. Another problem which has not been considered before is the proof of the existence of a long-range order in an antiferroelectric. Such a problem is useful and desirable, especially since the only available calculation is that of the F model and is based on assumptions that appear to be difficult to justify. In this paper we consider both these problems.

In Sec. II we define the various vertex models and standardize the notation to be used in the ensuing proofs. The equivalence of various boundary conditions for the six-vertex models is considered in Sec. III using the weak-graph expansions. In particular, it is established that with no external field the free and periodic boundary conditions are completely equivalent. With an external direct and staggered field, we establish that the free and periodic boundary conditions are equivalent, and also equal to some special boundary conditions consistent with the energetically favored configurations, either at sufficiently low temperatures or with sufficiently high fields. These results, while expected, have not previously been proved. In Sec. IV, using the Peierls argument, we establish the existence of the spontaneous staggered polarization in a general antiferroelectric, including the F model. Several challenging unsolved problems related to the F model are presented in Sec. V.

II. BASIC DEFINITIONS

Let L be a two-dimensional square lattice of $N = n \times n$ vertices, with n even. The lattice edges of L which terminate in two vertices of L are called interior edges and those terminating in one vertex called exterior. A vertex which is the terminus of one or more exterior edges is called a boundary vertex and the set of such vertices called the boundary of L. The vertex model is defined by placing arrows on the edges of L.

We follow the notation of Ref. 1 in defining the vertex models. The most general vertex model that can be defined on L is the 16-vertex model. The 16 arrow configurations that can occur at a vertex are shown in Fig. 1.

Let e_i be the energy associated with the vertex of type $\xi = 1, 2, \ldots, 16$ and $\xi(i)$ be the type of configuration of the ith vertex. The partition function of the 16-vertex model is

$$ Z = \sum \omega_{\xi(i)} \prod_{i=1}^N e_{\xi(i)} $$

where $\omega_{\xi(i)} = \exp(-e_{\xi(i)}/kT)$ is the Boltzmann factor and the summation is extended to all arrow (or bond) configurations subject to a given boundary condition.

If all 16ω's are nonzero, we have a 16-vertex problem. Otherwise we have an eight-vertex model if ω_i is nonzero for $\xi = 1, 2, \ldots, 8$ only, and a six-vertex problem if $\omega_i = 0$ for $\xi = 1, 2, \ldots, 6$. Some physical properties of the six-vertex models appear to be rather different from the corresponding eight- or 16-vertex ones, and it is the main purpose of this paper to stress and discuss them.

We study a general six-vertex model defined by

$$
\begin{align*}
e_1 &= e_1 - (h + v), & e_2 &= e_1 + h + v, \\
e_3 &= e_2 - h + v, & e_4 &= e_2 + h - v, \\
e_5 &= e_3 + s, & e_6 &= e_3 - s \\
\end{align*}
$$

for vertices on sublattice A.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{vertexconfigs.png}
\caption{The vertex configurations of the 16-vertex model and the associated bond configurations using the convention C_2.}
\end{figure}
\[e_5 = e_3 - s, \quad e_6 = e_3 + s \quad \text{for vertices on sublattice } B, \]
\[\text{other } e_i = \infty. \]

The electric fields included are the horizontal and vertical direct fields \(h \) and \(v \), and the staggered quadrupole field \(s \).

The general KDF model is defined by
\[\epsilon_2 > \epsilon_1, \quad \epsilon_3 > \epsilon_1. \tag{3} \]

In the absence of any field, the ground state configurations are \(X_1 \) and \(X_2 \), which correspond to complete filling of the lattice with vertices \(\xi = 1, 2 \), respectively. An equivalent definition is \(\epsilon_1 > \epsilon_2, \quad \epsilon_3 > \epsilon_2 \), with ground states \(X_3 \) and \(X_4 \).

The general \(F \) model is defined by
\[\epsilon_1 > \epsilon_3, \quad \epsilon_2 > \epsilon_3. \tag{4} \]

For sufficiently small direct fields and without staggered field, the ground state configurations are \(X_{56} \) and \(X_{89} \), where \(X_{56} \) is given by
\[\xi(i) = 5, \quad i \text{ on sublattice } B, \]
\[\xi(i) = 6, \quad i \text{ on sublattice } A. \]

\(X_{56} \) is obtained from \(X_{56} \) by interchanging 5 and 6. The same ground states are found for the generalization of the \(F \) model to the 16-vertex antiferroelectric
\[e_5 = e_6 = 0, \quad e_7 > 0 \quad \text{for all } \xi \neq 5, 6. \tag{5} \]

We shall study the dependence of the free energy
\[\mathcal{F} = -kT \lim_{N \to \infty} (1/N) \ln Z \tag{6} \]
on the boundary conditions. A boundary condition (BC) on the finite lattice \(L \) is expressed by a restriction on the arrow directions on the exterior edges of \(L \). We speak of free boundary conditions (FBC) if there is no restriction, of periodic boundary conditions (PBC) if the two sets of horizontal (resp. vertical) exterior edges have identical arrow configurations. If the directions of the arrows on the exterior edges are all specified, we have a special boundary condition (SBC). We shall use SBC \(S_\alpha \), \(\alpha = 1, 2, 3, 4, 56, 65 \); to denote the boundary condition fitting to the configuration \(X_\alpha \). In Figs. 2a, b, S1, and S6 are pictured. The boundary condition under which \(\mathcal{F} \) is defined will be denoted by the subscript \(F, P, \) or \(\alpha \).

As a consequence of the ice rule, the SBC \(S_\alpha \), \(\alpha = 1, \ldots, 4 \), completely determines the configuration \(X_\alpha \) in the interior of \(L \). Therefore, if the free energy (6) satisfies

\[\mathcal{F}_F = \mathcal{F}_\alpha \]

for \(\alpha = 1, \ldots, 4 \), then the system is in the frozen state \(X_\alpha \); in particular, the direct polarization is saturated in the corresponding direction.

Furthermore, the SBC \(S_{56} \) and \(S_{65} \), which allow equal numbers of in and out arrows along the exterior rows and columns, only permit configurations in \(L \) with total direction polarization zero. Indeed, by the ice rule the vertical polarization is conserved from row to row, the horizontal from column to column. Therefore, if

\[\mathcal{F}_F = \mathcal{F}_{56} \text{ or } \mathcal{F}_{65}, \]
in some region in \((h, t)\), the direct polarization is zero in that region.

Since the free energy is different for the different frozen states, we already see that the free energy cannot be independent of the BC. This difficulty disappears as soon as the weights satisfy
\[\omega_1, \ldots, \omega_8 > 0, \quad \omega_9, \ldots, \omega_{16} \geq 0. \tag{7} \]

In that case, a volume \(V \times N \) with any BC can be imbedded in a volume \((n + 2) \times (n + 2)\) with any other BC, the energy difference being of the order of \(n \). This implies then that the limiting free energy (6) does not depend on the BC (see, e.g., Ref. 5, Lemma 2.2.1).

It is useful to introduce representations of the vertex configurations in terms of bond graphs. The bond graphs in Fig. 1 are obtained by drawing bonds for each \(\uparrow \) and \(\downarrow \) arrow. Under this convention, we shall call \(C_2 \), vertex 2 becomes the one with four bonds, configuration \(X_2 \) becomes \(X_{56} \) with bonds everywhere, and SBC \(S_2 \) becomes SBC \(S_{56} \) with bonds on all exterior edges. Analogously, we have the convention \(C_\alpha \), \(\alpha = 1, \ldots, 4, 56, 65 \), which carries \(X_\alpha \) over into \(X_{56} \) and \(S_\alpha \) into \(S_{56} \). In the bond language we also meet SBC \(S_\alpha \), Fig. 1c, in which no bonds (holes) appear on all exterior edges. In Sec. III the bond representations are used, together with the weak graph transformation, to prove the equivalence of boundary conditions in various cases.

In Sec. IV we use a representation of the arrow configurations in terms of closed polygons. For the 16-vertex antiferroelectric (5), we prove the existence of the spontaneous staggered polarization
\[P_0 = -\left(\frac{\delta \mathcal{F}}{\delta S_\alpha} \right)_{s=0} \tag{8} \]
for sufficiently low temperatures. For the \(F \) model we also find equivalence of FBC to SBC \(S_{56} \) or \(S_{65} \), which gives regions, where the direct polarization is zero and the staggered polarization is independent of the direct field.

III. EQUIVALENCE OF BOUNDARY CONDITIONS FOR THE ICE-RULE MODELS

Our proof is based on the application of the weak-graph expansion.\(^7\) It was first shown by Nagle\(^8\) that under the weak-graph expansion the six-vertex KDP and \(F \) models are transformed into eight-vertex models. For a general lattice model the weak-graph expansion will lead to a 16-vertex model. If all the transformed vertex weights are positive, one can then establish the equivalence of the boundary conditions as indicated above. The crux of matter is therefore to find a weak-graph expansion which will generate positive weights.

FIG. 2. Special boundary conditions for a 4 × 4 lattice.
(a) SBC \(S_1 \), (b) SBC \(S_4 \), (c) SBC \(S_2 \). The upper left vertex belongs to sublattice \(B \).

It will be convenient for our discussions to first review briefly the formulation of the weak-graph expansion. For simplicity we shall use bond graphs. For each edge connecting vertices \(i \) and \(j \) we introduce a matching factor

\[
\frac{1}{2} [1 + c_{ij}(\xi_i)c_{ij}(\xi_j)] = 1, \quad \text{if } \xi_i \text{ and } \xi_j \text{ are compatible,}
\]

\[
= 0, \quad \text{otherwise,}
\]

where

\[
c_{ij}(\xi_i) = c_{ji}(\xi_j) = 1, \quad \text{if } \xi_i \text{ has a bond on edge } ij,
\]

\[
= -1, \quad \text{otherwise.}
\]

Then the partition function takes the form

\[
Z = \sum_{\xi_1, \xi_2, \ldots, \xi_N} \prod_{i=1}^{N} \left(\frac{1}{2} [1 + c_{ij}(\xi_i)c_{ij}(\xi_j)] \right) \omega(\xi_i).
\]

For FBC there are \(2n(n-1) \) matching (interior) edges and for FBC there are \(2n^2 \), and for SBC \(S_n \), \(2n(n+1) \). Note that the matching factors for the exterior edges in the case of \(S_n \) have the form

\[
\frac{1}{2} [1 + c_{ij}(\xi_i)].
\]

Next we expand the product of the edge factors. Each term in the expansion is now a product of many \(c_{ij}(\xi_i)c_{ij}(\xi_j) \) factors which can be conveniently represented graphically by drawing bonds between the connected vertices \(i \) and \(j \). After rearrangement, (11) can be rewritten as

\[
Z = c \sum_{G} \prod_{i=1}^{N} \left(\frac{1}{2} \sum_{\xi_i} \omega(\xi_i) \prod_{k \in G} c_{ik}(\xi_i) \right),
\]

where the summation is extended to all bond graphs \(G \), the constant \(c = 1 \) for FBC, \(c = 2^{2n} \) for FBC and \(c = 2^{2n^2} \) for SBC \(S_n \).

The summation inside the square bracket in (12) can be considered to be some new vertex weights \(\omega' \) defined by the bond graphs \(G \). Since the bonds in \(G \) are drawn only on the matched edges, which include the interior edges for \(S_n \) and do not include them for FBC, we find

\[
Z_p(\omega) = Z_p(\omega'), \quad Z_p(\omega) = 2^{2n} Z_p(\omega'),
\]

\[
Z_B(\omega) = 2^{2n} Z_p(\omega').
\]

The new weights are

\[
\omega'(\xi_i) = \frac{1}{4} \sum_{\eta_i} \omega(\eta_i) \prod_{k \in G} c_{ik}(\eta_i).
\]

Detailed expression of this linear transformation can be found in Eq. (408) of Ref. 1 and will not be reproduced here.

If the transformed weights \(\omega' \) satisfy (7), then the thermodynamic limit (6) is independent of the BC. For the original weights \(\omega \) we have then, by (13),

\[
\mathcal{F}_\omega(\omega) = \mathcal{F}_\omega(\omega) = \mathcal{F}_{\omega'}(\omega).
\]

Let us apply this basic idea to various six-vertex models.

(i) General six-vertex model in zero field Here we show the equivalence \(\mathcal{F}_{\omega} = \mathcal{F}_{\omega} \) for the general six-vertex model in zero field. Let \(u_i = \exp(-\epsilon_i/kT) \), \(i = 1, 2, 3 \). Further, we take the fields \(h = v = s = 0 \) in (2). With

\[
\omega'_1 = \frac{1}{2} (u_1 + u_2 + u_3), \quad \omega'_2 = \frac{1}{2} (u_1 + u_2 - u_3),
\]

\[
\omega'_3 = \frac{1}{2} (u_1 - u_2 + u_3), \quad \omega'_4 = \frac{1}{2} (u_1 - u_2 - u_3),
\]

\[
\omega' = 0.
\]

Some of these weights may be negative, but if \(n \) is even the partition functions for PBC and SBC \(S_n \) are invariant under the reversal of sign of these weights. Then we conclude from (13) that

\[
\mathcal{F}_\omega(\omega) = \mathcal{F}_\omega(\omega)
\]

at all temperatures. Strictly speaking, the above reasoning does not hold for the special temperature, where two of the transformed weights are zero; but there the result follows by continuity of the free energies in the temperature. The equality of \(\mathcal{F}_\omega \) and \(\mathcal{F}_\omega \) does not follow generally because the FBC partition function of the transformed weights is not invariant under the reversal of sign. For \(T < T_c \), we also establish in the following that \(\mathcal{F}_\omega(\omega) = \mathcal{F}_\omega(\omega) \), where \(X_a \) is the ground state configuration.

(ii) General six-vertex model in direct and staggered fields For the general six-vertex model in nonzero fields, we now show that \(\mathcal{F}_{\omega} = \mathcal{F}_{\omega} = \mathcal{F}_{\omega} \), \(\alpha = 1, 2, 3, 4 \), \(56, 65 \), provided that the direct or the staggered field is large enough in the appropriate direction.

Consider the general six-vertex model (2). We put \(H = h/kT, \ V = v/kT, \ T = s/kT \). With convention \(C_2 \), the weak-graph expansion leads to the weights

\[
\omega'_1, \ldots, \omega'_8 = \frac{1}{2} [u_1 \cosh(H + V)] \]

\[
\pm u_2 \cosh(H - V) \pm u_3 \cosh H],
\]

\[
\omega'_0, \ldots, \omega'_6 = \frac{1}{2} [u_1 \sinh(H + V)] \]

\[
\pm u_2 \sinh(H - V) \pm u_3 \sinh H],
\]

each combination of the signs occurring twice. The transformed weights \(\omega' \) satisfy the positivity condition (7) if

\[
u_1 \cosh(H + V) > u_2 \cosh(H - V) + u_3 \cosh V, \]

\[
- u_1 \sinh(H + V) - u_2 \sinh(H - V) - u_3 \sinh H].
\]

This may always be satisfied at a given temperature by taking \(h \propto v \ll s \), independent of the other parameters. So then we have

\[
\mathcal{F}_\omega(\omega) = \mathcal{F}_\omega(\omega) = \mathcal{F}_\omega(\omega).
\]

By using the convention \(S_{\omega} \), \(\alpha = 1, \ldots, 4 \), we find in the same way that

\[
\mathcal{F}_\omega(\omega) = \mathcal{F}_\omega(\omega) = \mathcal{F}_\omega(\omega)
\]

if the direct field is large enough in the appropriate direction. The system is then in the frozen state \(X_{\alpha} \) with saturated direct polarization. Similarly if the vertex (2) is favorable, i.e., \(e_2 < e_1 \omega \), \(\alpha = 2 \), then (18), and hence (19), are always satisfied at sufficiently low temperatures. The same conclusion holds for (20) from which we conclude that if the vertex energies are such that the vertex \(\omega \), \(\alpha = 1, \ldots, 4 \), is favored, the system is in the frozen state \(X_{\alpha} \) at sufficiently low temperatures, a result borne out by the exact solution. In the case that the configuration 58 is favored, we use the convention \(C_{58} \) so that the weak-graph transformation gives the weights.

\[\omega_1, \ldots, \omega_6 = \frac{1}{2} \left(u_3 \cosh \beta \pm u_1 \cosh (H + V) \pm u_2 \cosh (H - V) \right) \]

\[\omega_1', \ldots, \omega_6' = \frac{1}{2} \left(u_3 \sinh \beta \pm u_1 \sinh (H + V) \pm u_2 \sinh (H - V) \right). \]

Using (7), this leads to the conditions

\[u_3 \cosh > u_1 \cosh (H + V) + u_2 \cosh (H - V), \]

\[u_3 \sinh > u_1 \sinh (H + V) + u_2 \sinh (H - V). \]

By taking the staggered field \(s \gg |h| \approx |v| \), at a given temperature, this can always be satisfied. Then

\[\mathcal{T}_f(\omega) = \mathcal{T}_s(\omega) = \mathcal{T}_{45}(\omega). \]

With convention \(C_{65} \), we find that

\[\mathcal{T}_f(\omega) = \mathcal{T}_s(\omega) = \mathcal{T}_{56}(\omega) \]

if \(s < -|h| \approx -|v| \). In both cases, the direct polarization is zero. Similarly if the vertex energies are such that the configuration \(56 \) is favored and \(s > 0 \), then (23), hence (24), is always satisfied at sufficiently low temperatures. Likewise, we find (24) to hold at sufficiently low temperatures and \(s < 0 \) if the configuration \(65 \) is favored. The proof breaks down for \(s = 0 \) and \(h \) or \(v = 0 \) (the F model in a direct field). Fortunately an alternate proof, which is valid for the F model with arbitrary \(s \) exists. For continuity or reading, details of the latter proof will be given in the Appendix. We remark that, under (23), (24), or (A1), the free energy is independent of the direct field \(h \) and \(v \). It follows that, in particular from (A1), \(P_0 \) is independent of \(h \) and \(v \).

(iii) The KDP and F models: While the results in (ii) above are sufficiently general, it is illuminating to specialize these conclusions to some special cases:

KDP model in zero field: The exact transition temperature \(T_c \) is known to be given by \(u_1 = u_2 + u_3 \); hence the condition (18) corresponds to \(T < T_c \). We conclude that the system is in a frozen state for \(T < T_c \), a result known from the exact solution.\(^1\) More generally we have

\[\mathcal{T}_f(\omega) = \mathcal{T}_s(\omega) = \mathcal{T}_{45}(\omega), \quad T < T_c \]

where \(X_\alpha = 1, 2, 3, 4 \), is the ground state configuration.

KDP model in a vertical field: The condition (18) for the system to be in a frozen state \(X_\alpha \) becomes

\[u_1 \cosh V > u_2 \cosh V + u_3, \quad v \neq 0. \]

It can be easily checked that the temperature given by (26) is lower than the exact transition temperature \(T_c \) [cf. (327) in Ref. 1]. Consequently the conclusion derived here is somewhat weaker than the known exact result\(^3\) which states that the system is frozen for \(T < T_c \).

F model in a zero field: We conclude that

\[\mathcal{T}_f(\omega) = \mathcal{T}_s(\omega) = \mathcal{T}_{56}(\omega), \quad T < T_c, \]

where the transition temperature \(T_c \) is given by the relation \(u_3 = u_1 + u_2 \).\(^1\)

F model in a staggered field: For \(s > 0 \) we find from (22) that (23) holds if

\[u_3 \cosh > u_1 + u_2. \]

We conjecture that (28) yields a lower bound on the exact transition temperature for a nonzero staggered field. If also a direct field \(v \) is present, Eqs. (18), (22), and (A2) determine regions of constant polarization \(0, \pm 1 \) in the \((\rho, \tau) \) plane, which have the same qualitative shape as the regions found for \(s = 0 \) (Ref. 1, Fig. 91).

IV. EXISTENCE OF \(P_0 \)

In this Section we use Peierls argument\(^\text{10} \) to establish the existence of the spontaneous staggered polarization \(P_0 \) in the general antiferroelectric (5).\(^\text{11} \) We need only to show the existence for the SBC \(S_{56} \). For the eight- and 16-vertex models the result is independent of the BC. For the F model, we then use the equivalence of SBC \(S_{56} \) with other BC established in Sec. III in conjunction with the standard concavity argument\(^\text{12} \) to extend the existence of \(P_0 \) to FBC and PBC.

The first step of our proof is to introduce for a vertex model a graph representation consisting of closed contours. Consider a lattice \(L' \) composed of all lattice points of \(L \) and also the intersecting points of the diagonals in \(L \). The edges of \(L' \) are the half-diagonals in \(L \). An example of \(L' \) and its relationship with \(L \) is shown in Fig. 3 for a \(4 \times 4 \) lattice. Consider the four quadrants belonging to a vertex of \(L' \). If a quadrant is bounded by two arrows pointing in or by two arrows pointing out, we draw a bond along the half-diagonal bisecting the quadrant. Then one can easily see that there are always an even number of bonds meeting at any interior vertex of \(L' \). This is also the case on the boundary of \(L' \), as illustrated in Fig. 3, if one assumes SBC \(S_{56} \) or \(S_{55} \) in \(L \). The result is then a one-to-one correspondence between the arrow configurations on \(L \) (assuming \(S_{56} \) or \(S_{55} \)) and the closed-polygonal configuration on \(L' \).\(^\text{13} \) This correspondence holds even if some of the vertex energies of \(L \) are \(\pm \infty \) such as in the F model. This only restricts the allowed contours on \(L' \) and will not affect the following discussions.

With these preliminaries, it is now relatively easy to formulate the Peierls argument. Since our proof follows closely the standard argument,\(^\text{12} \) we shall only point out the essential points. From (8) we have

\[P_0 = \lim_{n \to \infty} (1/n)(n_+ - n_-), \]

\[n_+ = n_{5B} + n_{6A}, \quad n_- = n_{5A} + n_{6B} \]

where \(n_{5B} \) denotes the number of (5) vertices on sub-lattice \(B \), etc., and \(\langle \rangle \) is the thermal average. Denote the vertices of \(n_+ \) by "+" and \(n_- \) by "-", as shown in Fig. 3, then the contours on \(L' \) separate seas of "+" from seas of "-". In fact, the contours go through all vertices except (5) and (6). Furthermore, the boundary of \(L' \) cannot be "-". Let

\[\epsilon = \min\{e_1, \ldots, e_4, e_7, e_8, e_9, \ldots, e_{16}\} > 0. \]

Then each bond segment on \(L' \) has a weight of at most \(\exp(-\epsilon/2kT) \). The standard argument then gives

\[(1/n)(n_+ - n_-) \leq \sum_{b \neq 4} (b/4)^2 3^b \epsilon^{b-2kT}. \]

Similarly the average fraction of vertices other than (5) and (6) is bounded by

\[1 - (1/n)(n_+ + n_-) = \sum_{b \neq 4} 3^{b-1} \epsilon^{b-2kT}. \]

The right-hand sides of (31) and (32) can be made arbitrarily small at sufficiently low temperatures. It follows then \((1/n)(n_+ - n_-) \) is nonzero and hence \(P_0 > 0 \) exists. This completes the proof.
V. DISCUSSIONS

Our methods are especially suited for discussion of the low temperature properties of the vertex models. They do not allow us to establish the equivalence of FBC and PBC for the six-vertex models at high temperature, except in the case of zero field where the existence of extra symmetries permits us to complete the proof.

We wish to point out that it is a mere consequence of the free rule that the six-vertex model can be put in a frozen state X_{s}, $\alpha = 1, 2, 3, 4$, if the vertex α is favored. This frozen state disappears as soon as the ice rule is violated. Indeed, another way to state these properties is to say that the free energy is not a strictly convex function of the direct fields h and v at sufficiently low temperatures. However, it has been shown14 that the eight- or the 16-vertex model in a direct field h, v and a staggered field is equivalent to an Ising model on a square lattice with finite, but short-ranged, interactions. Recently, Griffiths and Ruelle15 have shown that the free energy of such lattice system is a strict convex function of the translationally invariant interactions. Since the translationally invariant interactions of the corresponding Ising model depend linearly on h and v, the free energy of the eight- or 16-vertex models will be a strictly convex function of h and v. This then rules out the occurrence of the frozen states in these models.

To conclude our discussion, we list some unsolved problems related to the F model which appear to be particularly challenging:

(i) Are Φ_{s} and Φ_{p} analytic in s near $s = 0$ at sufficiently high temperatures? We note that Baxter16 has shown Φ_{s} is singular at $s = 0$ when $T = 2T_{c}$.

(ii) What is the decay of the correlation functions? Is it exponential like in an ordinary lattice gas with short-ranged interactions?

(iii) We expect $P_{0} = 0$ for $T > T_{c}$, and a rigorous proof of this fact appears to be lacking.

(iv) In the F model, like in an antiferromagnet, the translational invariance is broken at low temperatures and under small direct fields. In the v, T plane, for example, we then expect a boundary B_{1} which separates the regions of $P_{v} = 0$ and $P_{v} \neq 0$, as in an ordinary antiferromagnet. Does this boundary coincide with the boundary B_{2} separating the region of vertical polarization $y = 0$ and $y \neq 0$? Note that B_{1}, but not B_{2}, disappears if there is a nonzero staggered field. On the other hand, as discussed in the above, it is B_{2}, not B_{1}, which disappears when one goes over to an eight-vertex case.

(v) Does the staggered susceptibility diverge along the boundary B_{2}, separating regions of different long-range orders? Here we note that Baxter found that the staggered susceptibility diverges at $T = 2T_{c}$.

ACKNOWLEDGMENT

We would like to thank Dr. N. H. Kuiper for the hospitality extended to us at the Institut des Hautes Etudes Scientifiques where this research was performed.

APPENDIX

In this appendix we prove the following result for the F model specified by (2) and (4):

\begin{align}
\Phi_{p}(s) &= \Phi_{p}(s) = \Phi_{56}(s), \quad s \geq 0, \\
&= \Phi_{56}(s), \quad s \leq 0,
\end{align}

provided that

\begin{equation}
T \leq \min\{T_{c}(s + |s|)/|s|\}/3.
\end{equation}

Here T_{c} is the transition temperature of the F model in zero field, and ϵ is the minimum vertex energy defined by (29). First we establish the following lemma:

Lemma:

\begin{align}
Z_{56} &\geq Z_{65}, \quad s \geq 0, \\
Z_{65} &\geq Z_{56}, \quad s \leq 0.
\end{align}

Proof: The partition functions Z_{56} and Z_{65} are independent of h and v. Consider Z_{56} and Z_{65} as functions of the complex variable $z = \exp(s/kT)$. The boundary condition S_{56} can be simulated by taking $z = \infty$ at the boundary of the volume. It then follows from the work of Suzuki and Fisher17 (see also Chang et al.,18) that the partition function belongs to the Lee–Yang class (Ref. 17, Def. 1) for $T \geq T_{c}$, so that then we have19

\begin{equation}
Z_{56}(z) \neq 0, \quad |z| = 1.
\end{equation}

Also by arrow reversal we have, for all z,

\begin{equation}
Z_{56}(z) = Z_{56}(z^{-1}),
\end{equation}

which says that, for $|z| = 1$,

\begin{equation}
Z_{56}(z) = Z_{65}(z^{*}) = Z_{65}^{*}(z).
\end{equation}

Hence the function

\begin{equation}
f(z) = Z_{56}(z)/Z_{56}(z)
\end{equation}

is analytic in z for $|z| \geq 1$ ($z = \infty$ included) and satisfies

\begin{equation}|f(z)| = 1 \quad \text{for} \quad |z| = 1.
\end{equation}

The maximum modulus principle then gives

\begin{equation}|f(z)| \leq 1 \quad \text{for all} \quad |z| \geq 1.
\end{equation}

In particular this leads to the first part of the Lemma. The second part is obtained by symmetry.
Now we proceed to prove (A1). First consider \(s \geq 0 \). Using the notation of Sec. IV, we note that with FBC on \(L \) the contours can terminate at the boundary of \(L' \). So any configuration can be described in terms of connected paths \(\lambda_k \) beginning and ending at the boundary with closed contours. The paths \(\lambda_k \) divide \(L \) into subvolumes \(\Delta_j \) which have the BC \(S_{56} \) or \(S_{65} \) (adjacent subvolumes have opposite BC). Since the polygon-to-arrow-configurations correspondence is two-to-one, then to each path \(\lambda_j \) on \(L' \) there correspond two terms of the form

\[
\Pi_j e^{-u(\lambda_j)/2T} \Pi_j Z_a(\Delta_j) \tag{A8}
\]

in the partition function \(Z_a(L) \). Here \(a \) stands for either \(56 \) or \(65 \) and \(u(\lambda_j) \) is the sum of the vertex energies along the path \(\lambda_j \). Thus, by the lemma just proved, an upper bound on \(Z_a(L) \) results for \(s \geq 0 \) if we replace all \(Z_5 \) in (A8) by \(Z_{56} \). Furthermore, we note that

\[
Z_{56}(L) \geq \Pi_k e^{s|\lambda_k|/2T} \Pi_j Z_{56}(\Delta_j) \tag{A9}
\]

since every term on the right-hand side of (A9) appears in \(Z_{56}(L) \) but not vice versa; here \(|\lambda_k| \) is the number of vertex points along \(\lambda_k \). Using (29), we have also

\[
u(\lambda_k) \geq \epsilon |\lambda_k| \tag{A10}
\]

Combining (A8)–(A10) and replacing \(Z_a \) by \(Z_{56} \) in (A8), we then obtain the bound

\[
Z_F \leq Z_{56}D \quad s \geq 0 \tag{A11}
\]

where

\[
D = \sum_{\lambda_k} e^{(\epsilon s)|\lambda_k|/2T} \tag{A12}
\]

Now each \(\lambda_k \) must pass through at least one point on the boundary, we obtain

\[
D = \sum_{a=0}^{4n+4} \left(\sum_{\lambda_k} e^{(\epsilon s)|\lambda_k|/2T} \right) \tag{A13}
\]

where \(4n+4 \) is the number of vertices on the boundary of \(L' \). The series in (A13) converges if

\[
kT < (\epsilon + s)/\ln 3. \tag{A14}
\]

On the other hand, we have generally

\[
Z_{56} \leq Z_F \leq Z_5 \tag{A15}
\]

Thus we deduce the first statement \((s \geq 0) \) of (A1) on taking the thermodynamic limits of (A11) and (A15). The statement with \(s \leq 0 \) can be similarly obtained or by symmetry considerations.

We remark that the result (A1) is valid for arbitrary \(s \). Furthermore, for small \(|s| \), the temperature bound (A2) is better than the one obtained in Sec. III using the weak-graph expansions.

* On leave of absence from the University of Groningen, The Netherlands. Supported by The Netherlands Organization from the Advancement of Pure Research (Z.W.O.). Present address: Institute for Advanced Study, Princeton, N.J.
† Supported by Swiss National Foundation for Scientific Research. Present address: Laboratoire de Physique Theorique, Lausanne, Switzerland.
‡ Supported in part by the National Science Foundation.
3See discussions in Ref. 1.
4R. J. Baxter, J. Phys. C 94 (1973) and private communications.
6The mapping \(C_8 \) is that given in Fig. 5 of Ref. 1.
11If the vertex energies satisfy certain symmetry such as in an eight-vertex model in zero field, this result then also establishes the existence of a spontaneous polarization of a ferroelectric in a direct field in 45° direction in the first quadrant. See discussions in H. J. Brascamp, H. Kunz, and F. Y. Wu, J. Phys. C 1, 164 (1973).
12See, for example, discussion by R. B. Griffiths, in Ref. 1.
13The correspondence is two-to-one for periodic lattices.
19The conditions of Theorem 1 in Ref. 17 imply that \(Z (2) \) here is of the Lee-Yang class.